
Big-Data: Theory, Analytics and
Engineering Perspectives

Dr. Vijay Srinivas Agneeswaran

Director, Technology

Head, Big-Data R&D

Impetus InfoTech (India) Pvt. Ltd.

Big-data: Ming Boggling Numbers

� Digital universe – 1.8 Zettabytes (1 billion terabytes or 1012 GB)

of data in 2011 (EMC Report)

� expected to be 2.7 ZB in 2012 and 8 ZB in 2015.

� 1015 files

� 75% of information generated by individual users.

� 5 billion mobile phones in 2011, 30 billion content pieces on Facebook

every month (Mckinsey report).

� US Library of Congress has collected 235 TB of data (Infographic)

� Data per company in 15/17 sectors in US is > than 235 TB.

� Important areas (Mckinsey report)

� Healthcare – personalized medicine, clinical trial design, fraud detection etc.

� Governments (Aadhar project) – increased tax collection, transparency.

� Retail – consumer behaviour prediction, sentiment analysis, merchandizing

� Manufacturing – digital factory, R&D design, supply chain management etc.

� Telecom – Personal location data (GPS and other technologies) – smart routing

(navigation), automotive telematics, mobile Location Based Services (LBS).

Top Big-data analyzers/processors

� LinkedIn – petabytes of social data represented as graphs

� People You May Know feature

� Facebook – analyses petabytes of user generated data

� NY Times – processed 4 TB of raw images in less than a day.

� Amazon – retailer

� Recommendation system – consumer behaviour analysis

� 30% of books/products sold

� Akamai – analyzes 75 million events per day

� Targeted advertising

� Twitter – 340 million tweets per day or about 4000 tweets per second

on average.

� Peak 15000 tweets/second for Spain’s fourth goal in Euro 2012.

� Google – processes around 20000 terabytes (20 petabytes) per day.

� Flickr – 6 billion images (Flickr blog)

Big-data Funding Pattern

Big-data = volume + velocity + variety + (value)

Broad Focus

Big Data
Storage
Layer

Big Data
Analytics

Big Data
Computation

Data

source

Data

source

Data

source

Unstructured
Data

Unstructured
Data

Stream
Data

Stream
Data

Stream
Data

Stream
Data

How to maximize efficiency, scalability of performing operations on

Big-data – including storage, search, computation and analytics.

Hadoop Adoption Status: Sep 2012

� Enterprise level – not yet mainstream

� Experimental – lot of big companies have their own Hadoop

clusters including Sears, Walmart, Disney, AT&T etc.

� Departmental production – not quite enterprise production yet?

� Business use case

� Extract, Transform, Load ETL/ELT/data refinement

� Pentaho, Datameer SMEs in this space.

� Big-players – Informatica, Splunk (log analytics company) and IBM

� Industry-wise adoption

� Financial investment/trading – quite high, just as for any new tech.

� Banking Financial – slower.

� Telecom, Retail – cautious.

Future of Hadoop Adoption

� Enterprises

� ETL for production

� Hindrance – single cluster – Hadoop YARN is the way forward.

� Analytics

� May not replace data warehouses

� Real-time analytics is certainly the way forward.

� Hadoop can be alternative to scale-out analytical RDBMSs

(Vertica/VoltDB/SAP-HANA)

� Appliance market for Hadoop?

� Map-Reduce for iterative computations

� Hadoop not currently well suited

� Alternatives include Twister, Spark, HaLoop.

� Beyond Map-Reduce

� Pregel from Google, built on top of Bulk Synchronous Parallel (BSP).

Suitability of Map-Reduce

� Origin in functional programming languages (Lisp and ML)

� Built for embarrassingly parallel computations

� The map function outputs key value pairs

� Map: (k1, v1) -> list(k2, v2)

� Reducer functions perform aggregate operations over the key

� Reduce: list(k2, list(v2)) - > list(v2).

� Suitable for matrix multiplications, n-body problem and sorting problems –

linear regression, batch gradient descent will work well – Mahout has

these implementations.

� Algorithms which can be expressed in Statistical Query Model in summation

form – highly suitable for MR [1].

� Linear regression, linear SVM, Naïve bayes etc. fall in this category.

� Mahout has implemented only sequential version of logistic regression.

� Very hard to do in MR – inherently iterative

� Training is very fast and in parallel, but basic algorithm is sequential.

[1] Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G. R., Ng, A. Y., and Olukotun, K. Map-reduce for machine

learning on multicore. In NIPS (2006), pp. 281--288.

What about Iterative Algorithms?

� What are iterative algorithms?

� Those that need communication among the computing entities

� Examples – neural networks, PageRank algorithms, network traffic analysis

� Conjugate gradient descent

� Commonly used to solve systems of linear equations

� [1] tried implementing CG on dense matrices

� DAXPY – Multiplies vector x by constant a and adds y.

� DDOT – Dot product of 2 vectors

� MatVec – Multiply matrix by vector, produce a vector.

� 1 MR per primitive – 6 MRs per CG iteration, hundreds of MRs per CG

computation, leading to 10 of GBs of communication even for small matrices.

� Communication cost just overwhelms computation time – it takes

unreasonable time to run CG on MR.

� Other iterative algorithms – fast fourier transform, block tridiagonal

[1] C. Bunch, B. Drawert, M. Norman, Mapscale: a cloud environment for scientific computing,

Technical Report, University of California, Computer Science Department, 2009.

Further exploration: Iterative Algorithms

� [2] explores CG kind of iterative algorithms on MR

� Compare Hadoop MR with Twister MR (http://iterativemapreduce.org)

� It took 220 seconds on a 16 node cluster to solve system with 24 unknowns,

while for 8000 unknowns – took almost 2 hours.

� MR tasks for each iteration – computation is too little, overhead of setup of MR

tasks and communication is too high.

� Data is reloaded from HDFS for each MR iteration.

� Surprising that Hadoop does not have support for long running MR tasks

� Other alternative MR frameworks?

� HaLoop [3] – extends MR with loop aware task scheduling and loop invariant

caching.

� Spark [4] – introduces resilient distributed datasets (RDD) – RDD can be cached

in memory and reused across iterations.

� Beyond MR – Apache Hama (http://hama.apache.org) – BSP paradigm
[2] Satish Narayana Srirama, Pelle Jakovits, and Eero Vainikko. 2012. Adapting scientific computing problems to clouds using

MapReduce. Future Generation Computer Systems 28, 1 (January 2012), 184-192, Elsevier Publications

[3] HaLoop: Efficient Iterative Data Processing on Large Clusters by Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst.

InVLDB'10: The 36th International Conference on Very Large Data Bases, Singapore, 24-30 September, 2010

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: cluster computing with

working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (HotCloud'10). USENIX Association,

Berkeley, CA, USA, 10-10

Data processing: Alternatives to Map-Reduce

� R language

� Good for statistical algorithms

� Does not scale well – single threaded, single node execution.

� Inherently good for iterative computations – shared array architecture.

� Way forward

� R-Hadoop integration – or R-Hive integration

� R extensions to support distributed execution.

� [1] is an effort to provide R runtime for scalable execution on cluster.

� Revolution Analytics is an interesting startup in this area.

� Apache HAMA (http://hama.apache.org) is another alternative

� Based on Bulk Synchronous Parallel (BSP) model – inherently good for

iterative algorithms – can do Conjugate gradient, non-linear SVMs – hard in

Hadoop MR.

[1] Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber. 2012. Using R

for iterative and incremental processing. In Proceedings of the 4th USENIX conference on Hot

Topics in Cloud Computing (HotCloud'12). USENIX Association, Berkeley, CA, USA, 11-11.

Paradigms for Processing Large
Graphs in Parallel

� Pregel [1] – Computation engine from Google for processing graphs

� Implementation of Bulk Synchronous Parallel (BSP) – paradigm from traditional

parallel programming

� User defined compute() for each vertex at each superstep S.

� Edges – messages between vertices.

� Parallelism – Vertex compute functions run in parallel

� Compute-communicate-barrier – each iteration.

� Similar open source alternatives – Apache Giraph, Golden orb, Stanford GPS

� Pregel is good at graph parallel abstraction, ensures deterministic computation,

easy to reason with, but

� user must architect movement of data

� curse of slow job (barrier synchronization can be slowed by slow jobs –

sequential dependencies in the graph).

� Cannot prioritize/target computation where it is needed most – not adaptive

[1] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.

Pregel: A System for Large-scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data(SIGMOD '10). ACM, New York, NY, USA, 135-146.

Piccolo: Another Graph Processing
Abstraction

� Piccolo [1] – provides asynchronous graph processing abstraction.

� Application programs comprise

� control functions – executed on a single machine (master)

� Create kernels, shared tables, perform global synchronization.

� Kernel functions – executed on slaves in parallel.

� Table operations include get, put, update, flush, get_iterator.

� User defined accumulation functions for concurrent access to table entries.

� User defined table partition.

� Does not ensure serializable program execution.

� May be required for some ML algorithms, including dynamic Alternating Least

Squares (ALS) and Gibbs sampling.

[1] Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed Programs with Partitioned Tables.

In Proceedings of the 9th USENIX conference on Operating systems design and implementation (OSDI'10).

USENIX Association, Berkeley, CA, USA, 1-14.

GraphLab: Ideal Engine for
Processing Natural Graphs [1]

� Goals – targeted at machine learning.

� Model graph dependencies, be asynchronous, iterative, dynamic.

� Data associated with edges (weights, for instance) and vertices (user

profile data, current interests etc.).

� Update functions – lives on each vertex

� Transforms data in scope of vertex.

� Can choose to trigger neighbours (for example only if Rank changes drastically)

� Run asynchronously till convergence – no global barrier.

� Consistency is important in ML algorithms (some do not even converge

when there are inconsistent updates – collaborative filtering).

� GraphLab – provides varying level of consistency. Parallelism VS consistency.

� Implemented several algorithms, including ALS, K-means, SVM, Belief

propagation, matrix factorization, Gibbs sampling, SVD, CoEM etc.

� Co-EM (Expectation Maximization) algorithm 15x faster than Hadoop MR – on

distributed GraphLab, only 0.3% of Hadoop execution time.
[1] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.

2012. Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proceedings of the

VLDB Endowment 5, 8 (April 2012), 716-727.

GraphLab 2: PowerGraph –
Modeling Natural Graphs [1]

� GraphLab could not scale to Altavista web graph 2002, 1.4B vertices, 6.7B

edges.

� Most graph parallel abstractions assume small neighbourhoods – low degree

vertices

� But natural graphs (LInkedIn, Facebook, Twitter) is not like that – power law

graphs – small no. of highly connected people/vertices (popular) and large no. of

low degree vertices.

� Hard to partition power law graphs, high degree vertices limit parallelism.

� GraphLab provides new way of partitioning power law graphs

� Edges are tied to machines, vertices (esp. high degree ones) span machines

� Execution split into 3 phases:

� Gather, apply and scatter.

� Triangle counting on Twitter graph

� Hadoop MR took 423 minutes on 1536 machines

� GraphLab 2 took 1.5 minutes on 1024 cores (64 machines)
[1] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin (2012). "PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs." Proceedings of the 10th USENIX Symposium on

Operating Systems Design and Implementation (OSDI '12).

Broad Focus

Big Data
Storage
Layer

Big Data
Analytics

Big Data
Computation

Data
source

Data
source

Data
source

Unstructured
Data

Unstructured
Data

Stream
Data

Stream
Data

Stream
Data

Stream
Data

How to maximize efficiency, scalability of performing operations on
Big-data – including storage, search, computation and analytics.

Erasure Coding VS Replication [1]

Fixed MTTF &

Repair Epoch

Fixed Storage

Overhead &

Repair Epoch

Fixed Storage

and MTTF (10

million machines,

10% down).

Erasure Coding Much lower
storage

MTTF ~ 1020 years 8 nines availability
(with 32 fragments)

Replication Much higher
bandwidth

MTTF < 100 years 2 nines availability
(with 2 replicas)

MTTF – mean time to failures
Repair epoch – protocol for repairing failed disks

[1] Hakim Weatherspoon and John Kubiatowicz. 2002. Erasure Coding Vs. Replication: A Quantitative
Comparison. In Revised Papers from the First International Workshop on Peer-to-Peer Systems (IPTPS '01),
Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron (Eds.). Springer-Verlag, London, UK, 328-338.

Erasure Coding in Big-data Storage

� Microsoft Windows Azure File System (WAS)

� Users can store infinite data forever.

� Uses EC – local reconstruction codes

� Lowers no. of EC fragments required for reconstruction.

� Append only distributed file system

� Active extents are replicated 3 times – once > 1 GB, ECed. Replicas
deleted subsequently.

� Performance trade-off between replication VS EC – fragments can be
offline, network/node failures, reconstruction involves network bandwidth,
computation time.

� HDFS RAID – uses 4/5 EC special case of general EC.

� Hadoop 503 – incorporated into code, not a general EC mechanism.

� Rethinking EC for cloud [OK12] – proposes rotated Reed-Solomon codes.
[CH12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. 2012. Erasure coding in windows azure storage. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference (USENIX ATC'12). USENIX Association, Berkeley, CA, USA, 2-2.
[OK12] Osama Khan, Randal Burns, James Plank, William Pierce, and Cheng Huang. 2012. Rethinking erasure
codes for cloud file systems: minimizing I/O for recovery and degraded reads. InProceedings of the 10th USENIX
conference on File and Storage Technologies (FAST'12). USENIX Association, Berkeley, CA, USA, 20-20.

Broad Focus

Big Data
Storage
Layer

Big Data
Analytics

Big Data
Computation

Data
source

Data
source

Data
source

Unstructured
Data

Unstructured
Data

Stream
Data

Stream
Data

Stream
Data

Stream
Data

How to maximize efficiency, scalability of performing operations on
Big-data – including storage, search, computation and analytics.

Real-time Analytics: Trends

� Analysis at the “speed of thought”

� Qubole, DataDog, Boundary – startups in this space.

� Space Time Insight – $14M funding for geospatial and visual
analytics software in real-time Big-data space.

� Visualization + analytics at speed of thought

� Self-service data science – no need of data scientist

� Integration of visualization + big-data + Artificial intelligence +
social + analytics

� Interesting startups in this space – Tableau, Cliktech, Edgespring.

Thank You!

vijay.sa@impetus.co.in or

on LinkedIn at http://in.linkedin.com/in/vijaysrinivasagneeswaran

Or on Twitter @a_vijaysrinivas.

My company: Impetus Infotech Pvt. Ltd. (www.impetus.com)

I am looking for smart bees/ants to join my team!

