Big-Data: Theory, Analytics and Engineering Perspectives

Dr. Vijay Srinivas Agneeswaran Director, Technology Head, Big-Data R&D Impetus InfoTech (India) Pvt. Ltd.

Big-data: Ming Boggling Numbers

Digital universe – 1.8 Zettabytes (1 billion terabytes or 10¹² GB)

of data in 2011 (EMC Report)

- expected to be 2.7 ZB in 2012 and 8 ZB in 2015.
- 10¹⁵ files
- 75% of information generated by individual users.
- 5 billion mobile phones in 2011, 30 billion content pieces on Facebook every month (<u>Mckinsey report</u>).

imbet

- US Library of Congress has collected 235 TB of data (Infographic)
 - Data per company in 15/17 sectors in US is > than 235 TB.
- Important areas (<u>Mckinsey report</u>)
 - Healthcare personalized medicine, clinical trial design, fraud detection etc.
 - Governments (<u>Aadhar project</u>) increased tax collection, transparency.
 - Retail consumer behaviour prediction, sentiment analysis, merchandizing
 - Manufacturing digital factory, R&D design, supply chain management etc.
 - Telecom Personal location data (GPS and other technologies) smart routing (navigation), automotive telematics, mobile Location Based Services (LBS).

Top Big-data analyzers/processors

LinkedIn – petabytes of social data represented as graphs

imbet

- People You May Know feature
- Facebook analyses petabytes of user generated data
- NY Times processed 4 TB of raw images in less than a day.
- Amazon retailer
 - Recommendation system consumer behaviour analysis
 - 30% of books/products sold
- Akamai analyzes 75 million events per day
 - Targeted advertising
- Twitter 340 million tweets per day or about 4000 tweets per second on average.
 - Peak 15000 tweets/second for Spain's fourth goal in Euro 2012.
- Google processes around 20000 terabytes (20 petabytes) per day.
- Flickr 6 billion images (Flickr blog)

Big-data Funding Pattern

Big-data = volume + velocity + variety + (value)

How to maximize efficiency, scalability of performing operations on Big-data – including storage, search, computation and analytics.

Hadoop Adoption Status: Sep 2012

- Enterprise level not yet mainstream
 - Experimental lot of big companies have their own Hadoop clusters including Sears, Walmart, Disney, AT&T etc.
 - Departmental production not quite enterprise production yet?
- Business use case
 - Extract, Transform, Load ETL/ELT/data refinement
 - Pentaho, Datameer SMEs in this space.
 - Big-players Informatica, Splunk (log analytics company) and IBM
- Industry-wise adoption
 - Financial investment/trading quite high, just as for any new tech.
 - Banking Financial slower.
 - Telecom, Retail cautious.

Future of Hadoop Adoption

- Enterprises
 - ETL for production
 - Hindrance single cluster Hadoop YARN is the way forward.
- Analytics
 - May not replace data warehouses
 - Real-time analytics is certainly the way forward.
 - Hadoop can be alternative to scale-out analytical RDBMSs (Vertica/VoltDB/SAP-HANA)
- Appliance market for Hadoop?
- Map-Reduce for iterative computations
 - Hadoop not currently well suited
 - Alternatives include Twister, Spark, HaLoop.
- Beyond Map-Reduce
 - Pregel from Google, built on top of Bulk Synchronous Parallel (BSP).

Suitability of Map-Reduce

- Origin in functional programming languages (Lisp and ML)
- Built for embarrassingly parallel computations
 - The map function outputs key value pairs
 - Map: (k1, v1) -> list(k2, v2)
 - Reducer functions perform aggregate operations over the key
 - Reduce: list(k2, list(v2)) > list(v2).
- Suitable for matrix multiplications, n-body problem and sorting problems linear regression, batch gradient descent will work well – Mahout has these implementations.

impet

- Algorithms which can be expressed in Statistical Query Model in summation form – highly suitable for MR [1].
- Linear regression, linear SVM, Naïve bayes etc. fall in this category.
- Mahout has implemented only sequential version of logistic regression.
 - Very hard to do in MR inherently iterative
 - Training is very fast and in parallel, but basic algorithm is sequential.

[1] Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G. R., Ng, A. Y., and Olukotun, K. Map-reduce for machine learning on multicore. In *NIPS* (2006), pp. 281--288.

What about Iterative Algorithms?

- What are iterative algorithms?
 - Those that need communication among the computing entities
 - Examples neural networks, PageRank algorithms, network traffic analysis
- Conjugate gradient descent
 - Commonly used to solve systems of linear equations
 - [1] tried implementing CG on dense matrices
 - DAXPY Multiplies vector x by constant a and adds y.
 - DDOT Dot product of 2 vectors
 - MatVec Multiply matrix by vector, produce a vector.
 - 1 MR per primitive 6 MRs per CG iteration, hundreds of MRs per CG computation, leading to 10 of GBs of communication even for small matrices.
 - Communication cost just overwhelms computation time it takes unreasonable time to run CG on MR.
- Other iterative algorithms fast fourier transform, block tridiagonal

[1] C. Bunch, B. Drawert, M. Norman, Mapscale: a cloud environment for scientific computing, Technical Report, University of California, Computer Science Department, 2009.

Further exploration: Iterative Algorithms

- [2] explores CG kind of iterative algorithms on MR
- Compare Hadoop MR with Twister MR (<u>http://iterativemapreduce.org</u>)
 - It took 220 seconds on a 16 node cluster to solve system with 24 unknowns, while for 8000 unknowns – took almost 2 hours.

impetu

- MR tasks for each iteration computation is too little, overhead of setup of MR tasks and communication is too high.
 - Data is reloaded from HDFS for each MR iteration.
 - Surprising that Hadoop does not have support for long running MR tasks
- Other alternative MR frameworks?
 - HaLoop [3] extends MR with loop aware task scheduling and loop invariant caching.
 - Spark [4] introduces resilient distributed datasets (RDD) RDD can be cached in memory and reused across iterations.
- Beyond MR Apache Hama (<u>http://hama.apache.org</u>) BSP paradigm

[2] Satish Narayana Srirama, Pelle Jakovits, and Eero Vainikko. 2012. Adapting scientific computing problems to clouds using MapReduce. *Future Generation Computer Systems* 28, 1 (January 2012), 184-192, Elsevier Publications
[3] <u>HaLoop: Efficient Iterative Data Processing on Large Clusters</u> by Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst. In*VLDB'10*: The 36th International Conference on Very Large Data Bases, Singapore, 24-30 September, 2010
[4] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: cluster computing with working sets. In *Proceedings of the 2nd USENIX conference on Hot topics in cloud computing* (HotCloud'10). USENIX Association, Berkeley, CA, USA, 10-10

Data processing: Alternatives to Map-Reduce

- R language
 - Good for statistical algorithms
 - Does not scale well single threaded, single node execution.
 - Inherently good for iterative computations shared array architecture.
- Way forward
 - R-Hadoop integration or R-Hive integration
 - R extensions to support distributed execution.
 - [1] is an effort to provide R runtime for scalable execution on cluster.

im/bet

- Revolution Analytics is an interesting startup in this area.
- Apache HAMA (<u>http://hama.apache.org</u>) is another alternative
 - Based on Bulk Synchronous Parallel (BSP) model inherently good for iterative algorithms – can do Conjugate gradient, non-linear SVMs – hard in Hadoop MR.

[1] Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber. 2012. Using R for iterative and incremental processing. In *Proceedings of the 4th USENIX conference on Hot Topics in Cloud Computing* (HotCloud'12). USENIX Association, Berkeley, CA, USA, 11-11.

Paradigms for Processing Large Graphs in Parallel

- Pregel [1] Computation engine from Google for processing graphs
 - Implementation of Bulk Synchronous Parallel (BSP) paradigm from traditional parallel programming
 - User defined compute() for each vertex at each superstep S.
 - Edges messages between vertices.
 - Parallelism Vertex compute functions run in parallel
 - Compute-communicate-barrier each iteration.
 - Similar open source alternatives <u>Apache Giraph</u>, <u>Golden orb</u>, <u>Stanford GPS</u>
 - Pregel is good at graph parallel abstraction, ensures deterministic computation, easy to reason with, but
 - user must architect movement of data
 - curse of slow job (barrier synchronization can be slowed by slow jobs sequential dependencies in the graph).
 - Cannot prioritize/target computation where it is needed most not adaptive

[1] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-scale Graph Processing. In *Proceedings of the 2010 ACM SIGMOD International Conference on Management of data*(SIGMOD '10). ACM, New York, NY, USA, 135-146.

Piccolo: Another Graph Processing Abstraction

- Piccolo [1] provides asynchronous graph processing abstraction.
 - Application programs comprise
 - control functions executed on a single machine (master)
 - Create kernels, shared tables, perform global synchronization.
 - Kernel functions executed on slaves in parallel.
 - Table operations include get, put, update, flush, get_iterator.
 - User defined accumulation functions for concurrent access to table entries.
 - User defined table partition.
- Does not ensure serializable program execution.
 - May be required for some ML algorithms, including dynamic Alternating Least Squares (ALS) and Gibbs sampling.

[1] Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed Programs with Partitioned Tables. In *Proceedings of the 9th USENIX conference on Operating systems design and implementation* (OSDI'10). USENIX Association, Berkeley, CA, USA, 1-14.

GraphLab: Ideal Engine for Processing Natural Graphs [1] Goals – targeted at machine learning.

- Model graph dependencies, be asynchronous, iterative, dynamic.
- Data associated with edges (weights, for instance) and vertices (user profile data, current interests etc.).
- Update functions lives on each vertex
 - Transforms data in scope of vertex.
 - Can choose to trigger neighbours (for example only if Rank changes drastically)
 - Run asynchronously till convergence no global barrier.
- Consistency is important in ML algorithms (some do not even converge when there are inconsistent updates – collaborative filtering).
 - GraphLab provides varying level of consistency. Parallelism VS consistency.
 - Implemented several algorithms, including ALS, K-means, SVM, Belief propagation, matrix factorization, Gibbs sampling, SVD, CoEM etc.
 - Co-EM (Expectation Maximization) algorithm 15x faster than Hadoop MR on distributed GraphLab, only 0.3% of Hadoop execution time.

[1] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: a framework for machine learning and data mining in the cloud. *Proceedings of the VLDB Endowment* 5, 8 (April 2012), 716-727.

GraphLab 2: PowerGraph – Modeling Natural Graphs [1]

- GraphLab could not scale to Altavista web graph 2002, 1.4B vertices, 6.7B edges.
 - Most graph parallel abstractions assume small neighbourhoods low degree vertices
 - But natural graphs (LInkedIn, Facebook, Twitter) is not like that power law graphs – small no. of highly connected people/vertices (popular) and large no. of low degree vertices.

impetu

- Hard to partition power law graphs, high degree vertices limit parallelism.
- GraphLab provides new way of partitioning power law graphs
 - Edges are tied to machines, vertices (esp. high degree ones) span machines
 - Execution split into 3 phases:
 - Gather, apply and scatter.
 - Triangle counting on Twitter graph
 - Hadoop MR took 423 minutes on 1536 machines
 - GraphLab 2 took 1.5 minutes on 1024 cores (64 machines)

[1] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin (2012). "**PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs**." *Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI '12).*

How to maximize efficiency, scalability of performing operations on Big-data – including storage, search, computation and analytics.

Erasure Coding VS Replication [1]

	Fixed MTTF & Repair Epoch	Fixed Storage Overhead & Repair Epoch	Fixed Storage and MTTF (10 million machines, 10% down).
Erasure Coding	Much lower storage	MTTF ~ 10 ²⁰ years	8 nines availability (with 32 fragments)
Replication	Much higher bandwidth	MTTF < 100 years	2 nines availability (with 2 replicas)

MTTF – mean time to failures Repair epoch – protocol for repairing failed disks

[1] Hakim Weatherspoon and John Kubiatowicz. 2002. Erasure Coding Vs. Replication: A Quantitative Comparison. In *Revised Papers from the First International Workshop on Peer-to-Peer Systems* (IPTPS '01), Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron (Eds.). Springer-Verlag, London, UK, 328-338.

Erasure Coding in Big-data Storage

- Microsoft Windows Azure File System (WAS)
 - Users can store infinite data forever.
 - Uses EC local reconstruction codes
 - Lowers no. of EC fragments required for reconstruction.
 - Append only distributed file system
 - Active *extents* are replicated 3 times once > 1 GB, ECed. Replicas deleted subsequently.
 - Performance trade-off between replication VS EC fragments can be offline, network/node failures, reconstruction involves network bandwidth, computation time.

im/bet

- HDFS RAID uses 4/5 EC special case of general EC.
 - <u>Hadoop 503</u> incorporated into code, not a general EC mechanism.
- Rethinking EC for cloud [OK12] proposes rotated Reed-Solomon codes.

[CH12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding in windows azure storage. In *Proceedings of the 2012 USENIX conference on Annual Technical Conference* (USENIX ATC'12). USENIX Association, Berkeley, CA, USA, 2-2. [OK12] Osama Khan, Randal Burns, James Plank, William Pierce, and Cheng Huang. 2012. Rethinking erasure codes for cloud file systems: minimizing I/O for recovery and degraded reads. In*Proceedings of the 10th USENIX conference on File and Storage Technologies* (FAST'12). USENIX Association, Berkeley, CA, USA, 20-20.

How to maximize efficiency, scalability of performing operations on Big-data – including storage, search, computation and analytics.

Real-time Analytics: Trends

- Analysis at the "speed of thought"
 - Qubole, DataDog, Boundary startups in this space.
 - Space Time Insight \$14M funding for geospatial and visual analytics software in real-time Big-data space.

impetu

- Visualization + analytics at speed of thought
 - Self-service data science no need of data scientist
 - Integration of visualization + big-data + Artificial intelligence + social + analytics
 - Interesting startups in this space Tableau, Cliktech, Edgespring.

Thank You!

vijay.sa@impetus.co.in or

on LinkedIn at http://in.linkedin.com/in/vijaysrinivasagneeswaran

Or on Twitter @a_vijaysrinivas.

My company: Impetus Infotech Pvt. Ltd. (www.impetus.com)

I am looking for smart bees/ants to join my team!

